
Getting Started with UNIX

References : Sumitabha Das

Lecture – 15

Getting Started with UNIX

References : Sumitabha Das

SECTION -C

Introduction
 Changing permission modes
 Absolute & Relative Permissions

Changing file permissions : chmod
 A file or directory is created with a default set of permissions. Generally

the default setting write- protects a file from all except user(the owner of
the file) though all users may have read access. However this may not be
so on your system. To know your system’s default settings, create a file
xstart:
$ cat /usr/bin/startx > xstart actually copies the file startx
$ ls – l xstart
-rw-r- - r - - 1 kumar metal 1906 Sep 5 23:58
xstart

 It seems that, by default a file doesn’t also have execute permissions. So
how does one execute such file? To do that, the permission of the file
need to be changed. This is done with the chmod.

 The chmod (change mode) command is used to set the permissions of
one or more files for all three categories of users (user, group and
others).

 It can run only by the user(the owner) and the super user. The command
can be used in two ways:

 in a relative manner by specifying the changes to the current

We’ll consider both ways of using chmod in the following
sections:

(1) Relative permissions:
when changing permission in a relative manner,
chmod only changes the permissions specified in the
command line and leaves the other permissions
unchanged.

 In this mode it uses the following syntax :
chmod category operation permission
filename(s)
chmod takes as its arguments an expression
comprising some letters and symbols that completely
describe the user category and the type of permission
being assigned or removed. The expression contains
three components :

 User category (user, group, others)

 By using suitable abbreviations for each of these
components, you can frame a compact expression and
then use it as an argument to chmod. The
abbreviations used for these three components are
shown in table:

 Abbreviations used by chmod:

Category Operation Permission
u – User
g – Group
o – others
a – All (ugo)

+ - Assigns permissions
- - Remove permissions
= - assign absolute permissions

r -read
permission
w – write
permission
x –Execute
permission

 Now let’s consider an example. To assign execute permission to
the user (owner) of the file xstart, we need to frame a suitable
expression by using appropriate expression by using appropriate
characters from each of the three columns of above table. Since
the file need to be executable only by the user, the expression
required is u + x:
$ chmod u+x xstart
$ ls – l xstart
-rwxr- - r - - 1 kumar metal 1906 May 10:20 : 30
xstart

 The command assigns (+) execute (x) permission to the user (u),
but other permissions remain unchanged.

 You can now execute the file if you are the owner of the file but
the other categories (i.e. group and others) still can’t.

 To enable all of them to execute this file, you have to use multiple
characters to represent the user category (ugo):
$ chmod ugo+x xstart ; ls – l xstart Or
$ chmod a+x xstart (a implies ugo) Or $ chmod +x
(Bydefault a is implied)
-rwxr-xr-x 1 kumar metal 1906 May 10:20 : 30

(2) Absolute Permissions :
 Sometimes you don’t need to know what a file’s current

permissions are , but want to set all nine permission bits

explicitly. The expression used by chmod here is a string of

three octal numbers(base 8) .

 Octal numbers use the base 8, and octal digits have the

values 0 to 7. This means that a set of three bits can

represent one octal digit. If we represent the permissions

of each category by one octal digit, this is how the

permissions can be represented :

 Read permission – 4 (Octal 100)

 Write permission – 2 (Octal 010)

 For each category we add up the numbers. For
instance, 6 represents read and write permissions.

Binary Octal Permissions Significance
000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

-- -
- - x
- w -
- w x
r - -
r - x
r w -
r w x

No permissions
Executable only
Writable only
Writable and executable
Readable only
Readable and executable
Readable and Writable
Readable, Writable and
executable

 Now you can use a different method :
$ chmod 666 xstart ; ls – l xstart
- rw - rw –rw - 1 kumar metal 1906 May 10
20:30 xstart

The 6 indicates the read and write permissions(4+2)

Filters :Using Both Standard Input and Standard
Output

Unix command can be grouped into four categories:
1. Directory-oriented commands like mkdir, rmdir, cd and basic file

handling commands like cp, mv and rm use neither standard input nor
standard output.

2. Commands like ls, pwd, who etc don’t read standard input but they write
to standard output..

3. Commands like lp that read standard input but don’t write to standard
output.(lp command is used for printing a file.)
$ lp xyz.ps
Request id is prl-320 (1 file)
$ _
this command notifies the request id – a combination of a printer name
and (prl) and job number (320)

4. Commands like cat, wc, cmp, gzip etc that use both standard input and
standard output.

 Command in the fourth category, in UNIX is called FILTERS, and the
dual stream handling features makes filters powerful text manipulators.

 NOTE: Most filters can also read directly from files whose names are
provided as arguments.

 Let’s use bc command as a filter this time. Consider this file containing
some arithmetic expressions:
$ cat calc.txt
2^32 maximum memory on a 32 bit computer.
25 * 50
30* 25 + 15 ^ 2

You can redirect bc’s standard input to come from this file and save
output in yet another :
$ bc <calc. txt> result.txt
$ cat result.txt

4294967296 This is 2^32
1250 this 25*30
975 this is 30*25 + 15 ^ 2

Applications in Games
There are lots of fun things and games you can use in UNIX. Most of the

ones listed below are local to Brown University. Try each of these
commands. Check the man pages or the links below if you have
trouble, but note, some of the commands do not have man pages. Have
fun!

 banner
 figlet
 WhatsForDinner
 food dilbert
 Forecast
 fortune say
 Xteddy
 xdeady
 BattleTris
 nethack
 Netris
 xbill
 xblast
 xboing
 xroach

Research
 Unix Commands CCR's computing resources are primarily Linux based and therefore using them requires a basic

understanding of the Unix operating system. Some basic commands are provided below.

 Basic Unix Commands CCR Reference Card for Linux/UNIX commands pdf

 Show pathname of current directory: pwd

 List files: ls

 Make a directory: mkdir directory-name

 Change directory: cd directory-name
 Change directory back to home directory: cd

 Copy a file: cp old-filename new-filename

 View a file:
 cat filename
 more filename
 less filename

 Edit a file:
 emacs filename
 vi filename

 Delete a file: rm filename
 Delete a directory (recursively): rm -R directory-name

 All files and subdirectories are deleted

 Move a file: mv old-filename new-filename

 Change permissions:
 Arguments to chmod command: ugo+-rwx

 where ugo are user, group and other; rwx are read, write and execute
 Add execute permission for yourself: chmod u+x filename
 Remove read, write and execute for group and other from a directory its contents:

chmod -R go-rwx directory-name

